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ABSTRACT 

As forecasting the diffusion of new technologies results in unreliable predictions when only few trend data 
are available, scholars and practitioners alike favor foresight efforts of a more qualitative nature to gauge 
foreseeable futures. We argue that it is feasible to reconcile (quantitative) forecasting models with 
(qualitative) scenario development efforts by advancing a set of heuristics building on known diffusion 
curves. Rather than focusing on the ultimate set of parameter estimates, we explore a multi-dimensional 
space consisting of a wide range of values for each parameter implied. We demonstrate this approach for 
Battery Electric Vehicles in Europe and the US. Resulting outcomes are assessed in terms of how well they 
explain current observations by means of a loss function. The loss function allows us to evaluate the 
presence of different end states (multi-finality), their frequency of occurrence, and the implied time frames. 
The insights obtained inform foresight exercises in a number of distinctive ways. First, it becomes feasible 
to qualify the likelihood of - and the time horizon implied by - different scenarios. Second, allowing for 
multiple pathways and end states directs our attention to the antecedents required for different scenarios to 
unfold, which can inspire backcasting efforts of a more qualitative nature. Finally, applying the advanced 
logic on more fine-grained levels of analysis allows assessing the (differential) impact of policies oriented 
towards stimulating diffusion. As such, quantitative heuristics become a complement to scenario 
development exercises, rather than an inferior or even neglected substitute. 
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Bass Re-visited: Quantifying Multi-Finality 

 

1. Introduction: from forecast to foresight (and back) 

 “Forecasts are nothing, forecasting is everything”1  

 

Since the seminal work of Rogers (1962), models depicting the diffusion of an innovation have 

been proposed and explained in various research disciplines. Rogers (1962) defines the diffusion 

of an innovation as a social process by which an innovation becomes adopted within a community 

of users. In the marketing and communication tradition, the diffusion of an innovation represents 

the process of market adoption of new products and services driven by social influences, taking 

into account interdependencies among consumers as well as various market players (e.g. Mahajan 

et al., 1990; Peres et al., 2010). Likewise, management and economic scholars focusing on 

innovation define and model the diffusion as the extent to which an innovation becomes adopted 

within and across social groups over time (e.g. Brown, 1981; Stoneman, 2002).  

 

The main models in diffusion literature suggest that growth patterns of innovations follow sigmoid 

growth curves. The logistic equation (Verhulst, 1838, 1845; Pearl and Reed, 1920; Lotka, 1925), 

the Gompertz model, and the Bass model are commonly used mathematical representations of 

these S-shaped curves2. All these models involve an estimation of at least three parameters, related 

to the takeoff and steepness of the curve as well as its saturation level. The simple logistic equation 

– initiated by Verhulst (1838, 1845) – can be written as 

                                                 
1 The original quotation from D. Eisenhower pertains to planning (“Plans are nothing, planning is everything.”) 
2 A wider range of models has been explored in the literature; for a concise overview covering 29 different model 
specifications, see Meade and Islam (1998). 
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𝑋𝑋𝑡𝑡= =  𝑎𝑎
1 + 𝑐𝑐−𝑏𝑏𝑏𝑏

 ,  

whereas the Gompertz model equals 

𝑋𝑋𝑡𝑡 = 𝑎𝑎−𝑐𝑐−𝑏𝑏𝑏𝑏 

Where: 

Xt = the cumulative number of adopters at time t, 

a = the saturation level, 

b and c = entry (growth) and exit (displacement) rates. 

 

In this contribution, we focus on the diffusion model advanced by Bass (1969). The Bass model 

has been widely adopted in marketing and innovation studies alike (e.g. Mahajan et al., 1990; 

Chandrasekaran and Tellis, 2007; Massiani and Gohs, 2015) due to its straightforward intuition – 

the model reflects the social dynamics implied – as well as its predictive ability (for an overview, 

see e.g., Parker, 1994; Chandrasekaran and Tellis, 2007). In terms of adoption, the Bass model 

distinguishes innovators from imitators, with both groups reflecting a distinctive behavioral 

rationale and being influenced by different means of communication (see Bass, 1969; Lekvall and 

Wahlbin, 1973; Mahajan et al., 1990; Bass, Krishnan, and Jain, 1994).  

 

The basic premise underlying the Bass model is that the probability that an individual purchase 

will be made at time t given that no purchase has yet been made is a linear function of the number 

of previous buyers. Thus:  

𝑓𝑓(𝑡𝑡)
1 − 𝐹𝐹(𝑡𝑡)

= 𝑝𝑝 +  𝑞𝑞 [𝐹𝐹(𝑡𝑡)] 
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Where: 

f(t) = the proportion of the market potential that adopts at time t (i.e., density function), 

F(t) = the cumulative proportion of the market potential that has adopted by time t, 

p = coefficient of innovation (i.e., innovation rate) and, 

q = coefficient of imitation (i.e., imitation rate). 

 

If m represents the ultimate number of adopters, the number of adopters at time t can be expressed 

as mf(t) = n(t) and the cumulative number of adopters at (including) time t will be mF(t) = N(t). 

The continuous equation above could then further be written in its discrete form as:  

𝑁𝑁𝑡𝑡 =  𝑁𝑁𝑡𝑡−1 + 𝑝𝑝(𝑚𝑚 −𝑁𝑁𝑡𝑡−1) + 𝑞𝑞
𝑁𝑁𝑡𝑡−1
𝑚𝑚

(𝑚𝑚 −𝑁𝑁𝑡𝑡−1) 

Where: 

Nt = the cumulative number of adopters at time t 

m = the potential market (the ultimate number of adopters), 

 (m – Nt-1) = non-adopters at the beginning of period t 

 (Nt-1 / m) = the fraction that has already adopted 

 

In principle, only three observations would be sufficient to delineate the three parameters p, q and 

m (as illustrated in Bass, 1969, p. 224). At the same time, estimations become more complicated 

as soon as more data points become available because stochastic variability will be rule rather than 

exception (Modis and Debecker, 1992). In his seminal work, Bass (1969) used ordinary least 

squares (OLS) on discrete time series to distill a final model.  
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Schmittlein and Mahajan (1982) address a number of shortcomings of the OLS approach and 

introduce a procedure based on maximum likelihood estimation, while Srinivasan and Mason 

(1986) introduce a non-linear least squares approach (NLS). Both techniques estimate the 

parameters directly from the differential equation of the diffusion model and yield an improvement 

in predictive validity. However, both approaches require an initial value for each parameter (which 

could be provided by the initial OLS estimates, thus introducing a two-step method to estimate 

parameters; see also Srinivasan and Mason, 1986).  

 

In addition, several authors modified and refined the Bass model by introducing additional 

parameters – for example, incorporating marketing variables, the discovery of new uses, the impact 

of pricing strategies, the growth of relevant infrastructure, as well as the entry of competition 

(Urban et al., 1996); by considering different stages of diffusion in different countries, and by 

incorporating the diffusion across successive generations of technology (for an overview, see e.g., 

Mahajan et al., 1990; Parker, 1994; Meade and Islam, 2006). Whereas such refinements seem 

appropriate, the findings of Bass, Krishnan, and Jain (1994) reveal that the simple Bass model fits 

sales almost as well as the more complex models that sought to correct for its limitations.  

 

At the same time – and despite several refinements in parameter estimation techniques – they all 

remain ‘problematic’ in terms of forecasting ‘the’ future as model estimations result in unstable 

and rudimentary predictions when only few ‘trend’ data are available (i.e., during the early stages 

of diffusion). More specifically, parameter estimations lack predictive validity when the initial 

data set (used to gauge parameter estimates) only contains pre-takeoff sales since models require 
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data at both inflexion points (takeoff and slowdown) in order to become ‘predictive’ in a precise 

and valid manner (Heeler and Hustad, 1980; Schmittlein and Mahajan, 1982; Srinivasan and 

Mason, 1986; Mahajan et al., 1990; Venkatesan and Kumar, 2002; Chandrasekaran and Tellis, 

2007). Stated otherwise, diffusion models tend to yield only accurate insights retrospectively. Bass 

(1969) already indicated that parameter estimates are very sensitive to small stochastic variations 

when there are only a few data points available, whereas Heeler and Hustad (1980) suggest that 

stable and robust parameter estimates can be obtained only if the data under consideration (i) 

contain at least ten observations; and (ii) include the peak of the non-cumulative adoption curve. 

Similar concerns have been repeatedly expressed ever since (e.g., Srinivasan and Mason (1986), 

Mahajan et al., 1990; Venkatesan et al., 2004; Becker et al., 2009; Gross, 2008; Davidson et al., 

2013). In their application of the NLS estimation method, Van den Bulte and Lilien (1997, p. 350) 

concluded that “expecting a simple time series with a handful of noisy data points to foretell both 

the ultimate market size and the time path of market evolution is asking too much of too little 

data”, whereas Mahajan et. al (1990, p.9) conclude that “[…] parameter estimation for diffusion 

models is primarily of historical interest; by the time sufficient observations have developed for 

reliable estimation, it is too late to use the estimates for forecasting purposes”.  

 

In this contribution, we present the argument for and demonstrate how quantitative forecasting 

models could inform qualitative scenario development efforts even in situations where only 

relatively short time series are available (i.e., during the pre-takeoff phase of the diffusion process). 

Rather than using Bass’s model as a starting point to derive the ‘optimal’ set of parameter values, 

we design heuristics that start from the premise of multi-finality. Multi-finality has been described 

in physics and system theory as the phenomenon that “similar initial conditions may lead to dis-
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similar end-states” (Buckley, 1967). The heuristics implied revolve around the development of a 

three-dimensional search space (reflecting the presence of three model parameters to be estimated) 

and the introduction of a loss function to assess the ‘goodness of fit’ of potential outcomes with 

current observations. Combined, this approach allows us to derive multiple, plausible diffusion 

pathways reflecting a wide range of values for each parameter. Given this design approach and the 

possibility to apply it even when only relatively short time series are available, it is also deemed 

relevant and fit for use when important exogenous shocks are applied to the system that is 

examined and modeled. Hence, incorporating the multi-finality logic replaces the quest for the 

most accurate estimation by a systematic assessment of plausible trajectories based on limited time 

series intrinsic to the early stage of the diffusion process and applicable along a case or system 

spectrum ranging from instances of endogenous continuity to exogenous discontinuity.  

 

By assessing possible diffusion pathways for Battery Electric Vehicles in Europe and the United 

States (for the time period 2011-2017), we demonstrate that the proposed heuristics can inform 

qualitative foresight exercises in a number of distinctive ways. As multiple pathways are qualified 

ex ante and simultaneously, the presence of different end states with their corresponding frequency 

of occurrence can be considered as a starting point to quantify Knightian uncertainty (Knight, 

1921)3. This quantification yields insights into the time horizon of the different scenarios, but it 

also directs our attention to the antecedents required for backcasting the different unfolding 

scenarios. Here, the advanced grid logic and the implied heuristics can be highly informative. 

                                                 
3 “‘Uncertainty’ must be taken in a sense radically distinct from the familiar notion of ‘risk’, from which it has never 
been properly separated. […] The essential fact is that ‘risk’ means in some cases a quantity susceptible of 
measurement […] It will appear that a measurable ‘uncertainty’, or ‘risk’ proper, as we shall use the term, is so far 
different from an unmeasurable one that it is not in effect an ‘uncertainty’ at all.” 
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Indeed, when introducing more fine-grained levels of analysis (e.g., countries, states, and regions), 

it becomes feasible to assess the impact of different characteristics of local innovation systems 

(including policies) on the diffusion process of the underlying technology (product). Such insights 

can inform appropriate action so that diffusion dynamics are influenced in the direction of the 

desired end states. 

 

The paper proceeds as follows: Section 2 outlines the data and the heuristics deployed. In Section 

3, the major results obtained for the diffusion of the Battery Electrical Vehicle (for Europe and the 

US) are presented. We conclude by discussing the relevance and limitations of the heuristics 

advanced in Section 4. 

 

2. Data and heuristics  

The heuristics deployed to assess multi-finality will be illustrated by means of data reflecting the 

recent adoption of Battery Electric Vehicles (BEVs). While electrical cars per se are not a novel 

technology (or product)4, the entrance of Tesla in the car manufacturing industry and especially 

the introduction of the model S (2012) has created a new impetus resulting in expectations that 

mass adoption of BEVs is at hand. Current outlooks (e.g., The Economist, 2017; BloombergNEF, 

2019) suggest a massive adoption of BEVs, approaching a global market share of 25 percent by 

2030. 

                                                 
4 Note that the first electric road vehicles were already constructed in the 1880s, with G. Trouvé, W. Ayrton, J. Perry 
and F. Kimball amongst these pioneers. In 1899, C. Jenatzy captured the world road speed record with his ‘Jamais 
Content’. One of the most eccentric and interesting manufacturers of early electric cars was Oliver P. Fritchle. He sold 
his first vehicle in 1906 and built about 198 vehicles per year between 1909 and 1914.   
(https://www.curbed.com/2017/9/22/16346892/electric-car-history-fritchle) 
 

https://www.curbed.com/2017/9/22/16346892/electric-car-history-fritchle
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2.1 The car market – facts and figures 

Modelling the growth dynamics of new products involves a distinction between stocks (the 

installed product base) and flows (the inflow/replacement of/by new products) (see Sternman, 

2011). In Europe (EU-28), the stock of cars in 2016 equaled 259.7 million, with 15 million new 

annual registrations. In 2016, the average age of the EU fleet was 11 years. At this pace of 

replacement, it would take more than 17 years before the European fleet is renewed. If prospective 

new vehicle buyers consider purchasing an electric model but desist at the moment of truth, it takes 

– mutatis mutandis – more than 17 years before the ‘old’ technology exits the European fleet. The 

US market comprised 269 million motor vehicles in 2016, including passenger cars, motorcycles, 

(light) trucks, busses and other vehicles. The US market is characterized by a demand shift from 

automobiles to larger vehicles such as light trucks. In 2016, there were almost 113 million 

automobiles registered in the United States with an average age of 11.6 years. In 2017, 6.3 million 

new automobiles were registered. In this exercise, we focus on the data concerning automobiles 

for which – at this pace of replacement – almost 18 years would pass before renewal. Table 1 

summarizes some key figures concerning the European and US fleets: 

------------------------------------------ 

Insert Table 1 about here 

------------------------------------------- 

Although the Battery Electric Vehicle is still situated in the early, pre-takeoff phase of market 

adoption, time series with seven years of sales data are available for Europe5 and the US (2011 to 

                                                 
5 In Europe, one additional observation for the BEV stock per 2010 is also available (i.e., stock of 734 BEVs). 
However, we opt to omit this first observation, since the corresponding data is not available for the US market while 
the BEV models turned out to be simultaneously available in both regions. Thus, we will continue with a symmetric 
dataset for both regions. 
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2017). Table 2 reports the cumulative actual sales data (i.e., stock) of Battery Electric Vehicles in 

both regions.   

------------------------------------------ 

Insert Table 2 about here 

------------------------------------------- 

For both regions, we note that the adoption is characterized by steady growth; however, sales are 

not (yet) doubling annually. Although data for 2018 are currently available, we deliberately 

exclude these from the simulations because this will allow us to assess the predictive validity of 

the patterns obtained, at least in the short term (see Section 4).  

 

2.2 Modelling diffusion pathways: implied heuristics   

With basic figures on the total automotive markets in Europe and the United States, and yearly 

sales data of Battery Electric Vehicles over the last seven years, we can model diffusion pathways. 

Table 3 summarizes the heuristics deployed, which will be clarified and illustrated in this section.  

------------------------------------------ 

Insert Table 3 about here 

------------------------------------------- 

We focus on the first-purchase diffusion models as advanced by Bass (1969).  We assume that, in 

this early stage, the available sales data as depicted in Table 2 equal the first adoptions (Parker, 

1994), so no adjustments are made for replacement sales in this exercise. This is consistent with 

the average age and renewal periods from Table 1. Starting from the initial Bass model, we develop 

an exhaustive, three-dimensional search space reflecting plausible diffusion pathways for BEV. 
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The search grid consists of 500,000 different combinations of the implied parameters m, p and q 

for each region (EU and US). For m, we allow variations of 10 percent (from 10 to 100 percent of 

market share) while, for p and q, the ranges vary with 250 and 200 steps respectively:  

• 10% ≤m ≤ 100% (10 steps of 10%)  

• 0.00001 ≤ p ≤ 0.00250 (250 steps of 0.0001) 

• 0.01 ≤ q ≤ 2.00 (200 steps of 0.01) 

The ranges of both parameters (p and q) are chosen so as to reflect the variety (of parameter values) 

observed in the current literature, as summarized by Massiani and Gohs (2015) for electric cars.  

 

The exhaustive search grid allows us to assess all different combinations of the three parameters, 

with no ex ante assumption on either initial values for each parameter or potential equivalences 

between different value combination across the three parameters. Thus, in the first step, all 

imaginable combinations are considered to gauge potential diffusion pathways. 

 

In a next step, we select more plausible diffusion paths by introducing a loss function. This loss 

function assesses how well each parameter combination explains the available observations. In 

this case, we use the figures reported in Table 2 as observed data (separately for Europe and for 

the US) and compare them systematically with the predicted values obtained from each parameter 

combination. In total, we calculate one million loss functions (two times 500,000) whereby the 

‘goodness of fit’ for each combination is defined and calculated as:  

𝑅𝑅2 = 1 −  
𝑆𝑆𝑆𝑆 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑆𝑆𝑆𝑆 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂
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In a final step, we introduce a threshold value pertaining to the R², in order to select – and, in a 

subsequent step, to assess and qualify – more plausible scenarios. For this paper, we chose to select 

all parameter combinations that pass the 99 percent threshold6. 

 

These diffusion paths (with an R2 > 0.99) are labelled as the more likely scenarios because these 

models are best at explaining what we can currently observe in terms of market adoption. We 

obtain 689 models7 for Europe and 1,864 models for the US that meet this requirement. Figures 

1a and 1b compare the actual observations (i.e., the red dotted line) with the selected more likely 

scenarios (due to graphical limitations, only those models exceeding the 99.65 percent threshold 

are depicted) for both Europe (Figure 1a) and the US (Figure 1b).  

---------------------------------------------- 

Insert Figures 1a and 1b about here. 

---------------------------------------------- 

 

3. Selected diffusion pathways: how do they inform the future? 

The heuristics implied derive plausible diffusion pathways that allow for the presence of multi-

finality. Multi-finality implies that “similar initial conditions may lead to dissimilar end-states” 

                                                 
6 Applying a threshold value of 95 percent, yields similar results as the ones reported here. 
7 Including the observation for 2010 in the European situation would lower this number to 321 more likely scenarios, 
which makes sense intuitively because this would impose the curve that fits with the extra observation point as well.  
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(Buckley, 1967), as visualized in Figures 2a and 2b (due to graphical limitations, we only depict 

those exceeding an R2 > 99.65 percent8).  

Incorporating the multi-finality logic replaces the quest for the most accurate estimation by a 

systematic and exhaustive assessment of plausible trajectories, based on the limited time series 

inherent in early stage data. Note that our results signal scenarios in which the electric car obtains 

a lion’s share of the market. These scenarios are present in the subset of more likely scenarios but 

to a much lesser extent than scenarios closer to market share of 20 percent and lower, which 

becomes apparent when inspecting Table 4.  

---------------------------------------------- 

Insert Figures 2a and 2b about here. 

--------------------------------------------- 

Indeed, when different combinations of parameter values perform equally well in terms of 

modelling a current trend, the mere calculation and inspection of the resulting curves and their 

underlying parameter combinations enable us to assess the nature of different pathways to the 

future and to gauge their corresponding likelihood. Table 4 reports the market share distribution 

of the more likely scenarios for both regions, and it reveals that models closer to a market share of 

20 percent and lower are much more present in the sample of more likely scenarios than scenarios 

that suggest a lion share for BEVs (market share of 50 percent and higher). The strong resemblance 

in terms of obtained frequencies per market share conditions between Europe and the US should 

be noted accordingly.  

 

                                                 
8 The observed patterns are insensitive to the exact value of the threshold at least when this range is situated in the 
range between 95 and 99%. 
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------------------------------------------ 

Insert Table 4 about here 

------------------------------------------- 

Finally, Tables 5a and 5b include some key figures for these more likely scenarios, on a yearly 

basis up to 2020 and with a five-year interval thereafter. Columns 2 to 4 provide the minimum, 

maximum and average market share of Battery EVs for this set of more likely scenarios. In 2025, 

the average ‘predicted’ values remain below 5 percent, both for Europe and the United States. In 

the most ‘extreme’ model, 5.80 percent (resp. 9.50 percent) of the European (resp. American) stock 

will consist of BEVs. In order to reach these scenarios, 37.55 percent (resp. 54.16 percent) of the 

new registrations (columns 5 to 10) should be composed of BEVs in Europe (resp. United States). 

Therefore, these findings contrast with some of the scenarios advanced by industry and/or policy 

makers projecting a global market share for electrical cars in excess of 10 percent by 2025 (The 

Economist, 2017; BloombergNEF, 2019).  

--------------------------------------------- 

Insert Tables 5a and 5b about here 

------------------------------------------- 

 

4. Discussion and conclusion.  

In this contribution, we advance heuristics which allow to assess the likelihood of different 

diffusion paths to unfold when only limited time series (on the adoption/diffusion) are available. 

The heuristics start from a sigmoid curve, assess a wide range of parameters simultaneously, and 

imply a loss function which qualifies the different parameter values in terms of ‘fit’ with respect 

to available observations. We illustrate the relevance of this approach by modelling the diffusion 
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of the battery electrical vehicle. We demonstrate that engaging in quantitative modelling is a 

complement rather than a substitute for scenario development, and we argue that these heuristics 

could well inspire scholars to re-consider the relevance of forecasting models to scenario 

development for a number of reasons.  

 

First, rather than searching for a unique – ‘ultimate predictive’ – set of parameter estimates for the 

Bass model, we consider different combinations of the underlying parameters ex-ante, 

simultaneously and (rather) exhaustively. By examining an exhaustive range of parameter values, 

the considered grid allows for multi-finality to unfold.  

 

Second, the implied multi-finality seems to offer the potential to assess and model uncertainty 

(Knight, 1921) within a technological trajectory in a quantitative manner. If one accepts the idea 

that the occurrence of certain parameter values – within the subset of more likely scenarios – 

reflects the likelihood of unfolding, it becomes feasible to assess the likelihood as well as the time 

horizon inferred for all different scenarios. When different combinations of parameter values 

perform equally well in terms of modelling a current trend, the mere calculation and inspection of 

the resulting curves enables us not only to assess the nature of different pathways to the future but 

also to assess their likelihood.  

 

Third, it becomes feasible to assess the time horizon for unfolding a technological trajectory. The 

scenarios that industry and policy makers are explicating in their diffusion projections (e.g., The 

Economist, 2017; BloombergNEF, 2019) seem optimistic. Instead, our models suggest in the 

‘short’ term (6 years), an evolution towards a BEV market share – on average – ranging between 
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2.25 and 4.09 percent as more likely9. Notwithstanding the implied multi-finality in the long term, 

pathways pass through a narrow funnel (as visualized in Figures 2a and 2b) in the short term. In 

this respect, forecasting the market adoption in the short term becomes feasible even in situations 

where only relatively short time series are available. 

 

Finally, the presence of multiple trajectories towards the future directs our attention to the 

antecedents required in backcasting the different scenarios to unfold (Robinson, 1982, 1990). 

Influencing these pathways towards more desired (higher) end stages might be achieved by 

introducing specific policies and measurements (e.g. providing financial (dis-) incentives to offset 

the substantial investment in acquiring a BEV) and/or to further invest in technological 

breakthroughs (on the level of cars, batteries), which might result in competitive price/value ratios.  

It should be noted that, in this respect, the proposed heuristics are instrumental as well. If different 

regions (or states, nations) opt for different policies and/or different technological platforms, one 

can start to model the differential impact thereof and assess whether, to what extent, and when 

different end states become attainable. 

 

We want to end this paper by pointing out some limitations, which equal interesting avenues for 

future research. As we consider only one diffusion model, it would be relevant to introduce and 

extend the heuristics with diffusion patterns displaying more complex forms (e.g. Schmoch (2007), 

Meade and Islam (1998)). Likewise, validation of relevant parameter ranges, including potential 

trade-offs might be a concern to address, since it will influence the completeness of the search 

                                                 
9 In this respect it is interesting to note that the real sales figures for Europe in 2018 equaled 150 003; our models for 
Europe (including also data for 2010) advanced a forecast of 152 700 (99,1% accuracy). 
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space taken into consideration. Finally, while we claim to have found a way of quantifying 

Knightian uncertainty, it goes without saying that this is only partly true: the development of a 

certain technology-product platform is considered in isolation (in this case the Li-Ion Battery 

Electrical Vehicle). Complementary and competing developments beyond this platform could 

equally start to influence the growth (or decline) dynamics of this trajectory. Therefore, heuristics 

that include a more systemic perspective would seem to be a logical next step; including the 

incorporation, modelling and impact assessment of policies. We hope our contribution will inspire 

colleagues and scholars to engage in such efforts.   
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TABLE 1 

Key figures on European and US fleets 

 Europe United States 

Number of cars (2016, mio) 259.7 113 (out of 269) 

New annual registrations (2016, mio) 15 6.3 

Average age 11 11.6 

Renewal period (in years) 17 18 

Market share (2017) of BEVs 0.12% 0.35% 

 

 

TABLE 2 

Cumulative sales data on Battery EVs in Europe and United States, from 2011 to 2017 

(Sources: European Environment Agency; US Department of Energy – Energy Efficiency and Renewable Energy, hybridcars.com) 

Year Stock BEVs in Europe Stock BEVs in US 

2011  8,493  10,060 

2012  22,479  24,710 

2013  46,654  72,404 

2014  84,509  135,820 

2015  141,265  206,864 

2016  205,581  293,595 

2017  302,724  398,066 
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TABLE 3 

Overview of the heuristics deployed, illustrated with the BEV case. 

Steps  BEV application 

1. Select an appropriate diffusion model  Bass model 

2. Define the relevant parameter variations  Parameter m (10), p (250) and q (200) 

3. Elaborate the search grid, based on all possible 

parameter combinations  

Calculate 500,000 times series 

reflecting all parameter combinations 

per region 

4. Introduce the goodness-of-fit calculus (loss 

function) 

Calculate the loss function for each 

combination (500,000) 

5. Set a threshold to identify ‘more likely’ scenarios R2 > 0.99 

6. Assess and interpret these ‘more likely’ scenarios 

in terms of impact and timing 

689 for EU and 1,864 for US 
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TABLE 4 

Market share distribution of the more likely scenarios (i.e. R2 >.99) 
Market 

share 

Europe10 United States 

Count % Count % 

10% 234 33.96% 646 34.66% 

20% 117 16.98% 320 17.17% 

30% 79 11.47% 211 11.32% 

40% 58 8.42% 157 8.42% 

50% 47 6.82% 128 6.87% 

60% 40 5.81% 104 5.58% 

70% 34 4.93% 91 4.88% 

80% 29 4.21% 78 4.18% 

90% 27 3.92% 67 3.59% 

100% 24 3.48% 62 3.33% 

Total 689 100.00% 1,864 100.00% 
 

        

Parameter Min Max Min Max 

p value 0.00003 0.00067 0.00012 0.00241 

q value 0.28 0.62 0.23 0.51 

                                                 
10 Including the observation of the first available year in Europe (i.e., a stock of 734 BEVs in 2010) would lower the 
valid p-interval to [0.00002 – 0.00039] and narrow the valid q-interval down to [0.35 – 0.65]. However, including this 
observation does not impact the overall market share distribution of these more likely scenarios, nor the distribution 
in the market share intervals of [1 – 10%] and [11 – 20%]. One could then question the relevance of point estimating 
the optimal values of the model parameters, when excluding (or ‘missing’) just one observation (i) yields more optima 
(with a similar distribution pattern); and (ii) broadens the scope of the valid parameter intervals. 
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TABLE 5A  

Descriptive statistics: Battery Electric Vehicles in Europe (R2 >.99; n = 689) 

 Market Share New BEV entrants 

 Year Min Max Average Min % Max % Average % 

2018 0.14% 0.21% 0.17%       94,842.45  0.63%        209,073.06  1.39%      142,279.99  0.95% 

2019 0.19% 0.34% 0.25%     120,973.19  0.81%        334,308.92  2.23%      205,002.86  1.37% 

2020 0.25% 0.54% 0.36%     153,625.62  1.02%        536,374.07  3.58%      295,724.01  1.97% 

2021 0.33% 0.87% 0.53%     194,637.12  1.30%        865,711.82  5.77%      426,521.91  2.84% 

2022 0.42% 1.41% 0.76%     245,866.94  1.64%     1,394,049.40  9.29%      613,824.53  4.09% 

2023 0.54% 2.27% 1.10%     309,414.45  2.06%     2,236,480.79  14.91%      878,809.56  5.86% 

2024 0.69% 3.64% 1.58%     387,536.35  2.58%     3,566,484.40  23.78%   1,246,345.07  8.31% 

2025 0.87% 5.80% 2.25%     482,474.00  3.22%     5,632,586.38  37.55%   1,740,927.43  11.61% 

2030 2.60% 44.74% 10.06%     963,331.00  6.42%   33,226,959.65  221.51%   5,795,495.99  38.64% 

2035 5.81% 96.54% 22.58%         9,605.36  0.06%   30,465,122.01  203.10%   5,991,332.30  39.94% 

2040 8.62% 99.96% 30.44%              75.99  0.00%   22,995,334.31  153.30%   2,850,446.76  19.00% 

2045 9.69% 100.00% 33.41%                0.60  0.00%   17,498,443.39  116.66%      882,939.14  5.89% 
 

 
 
 
 
 



 25 

 

TABLE 5B  

Descriptive statistics:  Battery Electric Vehicles in the United States (R2 > .99; n = 1.864) 

  Market Share New BEV entrants 

 Year Min Max Average Min % Max % Average % 

2018 0.42% 0.59% 0.50%     110,782.01  1.76%        229,429.25  3.64%      160,395.34  2.55% 

2019 0.54% 0.89% 0.69%     135,115.97  2.14%        342,238.81  5.43%      216,096.31  3.43% 

2020 0.69% 1.34% 0.95%     164,089.37  2.60%        509,073.63  8.08%      290,308.03  4.61% 

2021 0.87% 2.01% 1.29%     198,232.88  3.15%        754,041.18  11.97%      388,068.01  6.16% 

2022 1.08% 2.99% 1.75%     237,955.46  3.78%     1,109,863.86  17.62%      514,728.15  8.17% 

2023 1.33% 4.42% 2.34%     283,433.33  4.50%     1,624,951.99  25.79%      675,048.50  10.72% 

2024 1.62% 6.50% 3.12%     334,464.23  5.31%     2,370,263.32  37.62%      871,717.74  13.84% 

2025 1.97% 9.50% 4.09%     390,293.67  6.20%     3,411,936.13  54.16%   1,103.547.44  17.52% 

2030 4.45% 47.68% 12.47%     279,620.46  4.44%   12,721,709.69  201.93%   2,378,727.59  37.76% 

2035 7.36% 93.57% 23.26%         9,097.15  0.14%   10,794,821.77  171.35%   2,203,456.31  34.98% 

2040 9.13% 99.75% 29.97%            255.08  0.00%     8,075,804.28  128.19%   1,073,685.46  17.04% 

2045 9.76% 99.99% 32.67%                7.12  0.00%     6,315,365.90  100.24%      373,617.39  5.93% 
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FIGURE 1A 

Comparison of the observations (i.e., red dotted line) with the more likely scenarios  

(R2 >.9965) in Europe 

 

FIGURE 1B 

Comparison of the observations (i.e. red dotted line) with the more likely scenarios  

(R2 >.9965) in the US 
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FIGURE 2A:  

More likely scenarios (R2 >.9965) for Battery EVs in Europe (n = 211) 
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FIGURE 2B:  

More likely scenarios (R2 >.9965) for Battery EVs in the US (n = 148) 
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